Orphan Genes Find a Home: Interspecific Competition and Gene Network Evolution
نویسندگان
چکیده
Conservation of gene and protein sequence, and, therefore, conservation of the resulting molecular interactions that mediate biological processes, is foundational to our understanding of biology. This conservation allows discovery in one organism, such as worms or mice, to inform our understanding of the biology in another organism, such as humans. However, there is emerging recognition that many biological processes involve important non-conserved elements, and that de novo gene birth provides an important mechanism for functional evolution [1–3]. Understanding how these novel elements incorporate into gene regulatory networks and alter the network architecture is an important area for theoretical research [4–5], but few experimental examples have been described. Formation of the dauer larva by nematodes is an adaptation that is responsive to a variety of environmental cues and alterations, features that suggest the underlying gene regulatory network might benefit from enhanced robustness and evolvability [6]. The dauer larva is a relatively dormant, alternative developmental stage that nematodes enter under stressful conditions, such as low food or crowding (signaled by pheromone), that confers increased longevity and tolerance to stressors [7]. In many parasitic nematodes, this stage corresponds to the infective larval stage when the larvae transition to new hosts. There are important conserved components of the gene network that regulate dauer formation, one being the nuclear hormone receptor DAF-12, which is important in free-living as well as parasitic nematode species [8– 10]. However, it is also clear that this pathway is subject to considerable interand intraspecific differences [11–13]. Recent work on natural isolates of the nematode Pristionchus pacificus identified strain-specific phenotypic differences in dauer formation, and argued that genetically distinct populations exhibit greater sensitivity to pheromone from other populations (pheromone cross-preference [14]). The genetic alterations responsible for these phenotypic differences, however, had not yet been identified. A new paper in this issue of PLOS Genetics [15] provides an answer, and at the same time highlights how “orphan” genes can be incorporated into conserved regulatory networks. The authors started with two strains of P. pacificus that exhibited marked differences in response to pheromone signaling: the RS2333/California strain, with low dauer formation in response to pheromone, and the RS5134/Ohio strain, with a high response. They then generated 911 recombinant inbred lines (RIL) between the strains, and used Quantitative-Trait-Loci (QTL) mapping to identify a novel gene with no apparent orthologs outside of Pristionchus, dauerless (dau-1), that had undergone a duplication event in the RS2333/California strain. This suggested that dau-1 functions as a repressor of dauer formation in a dose-dependent manner. To test this hypothesis, the authors created transgenic lines with multiple copies of dau-1, and
منابع مشابه
Nematode orphan genes are adopted by conserved regulatory networks and find a home in ecology
Nematode dauer formation represents an essential survival and dispersal strategy and is one of a few ecologically relevant traits that can be studied in laboratory approaches. Under harsh environmental conditions, the nematode model organisms Caenorhabditis elegans and Pristionchus pacificus arrest their development and induce the formation of stress-resistant dauer larvae in response to dauer ...
متن کاملUsing the Protein-protein Interaction Network to Identifying the Biomarkers in Evolution of the Oocyte
Background Oocyte maturity includes nuclear and cytoplasmic maturity, both of which are important for embryo fertilization. The development of oocyte is not limited to the period of follicular growth, and starts from the embryonic period and continues throughout life. In this study, for the purpose of evaluating the effect of the FSH hormone on the expression of genes, GEO access codes for this...
متن کاملTrait Evolution in Adaptive Radiations: Modeling and Measuring Interspecific Competition on Phylogenies.
The incorporation of ecological processes into models of trait evolution is important for understanding past drivers of evolutionary change. Species interactions have long been thought to be key drivers of trait evolution. However, models for comparative data that account for interactions between species are lacking. One of the challenges is that such models are intractable and difficult to exp...
متن کاملAn evolutionary analysis of orphan genes in Drosophila.
Orphan genes are protein-coding regions that have no recognizable homolog in distantly related species. A substantial fraction of coding regions in any genome sequenced consists of orphan genes, but the evolutionary and functional significance of orphan genes is not understood. We present a reanalysis of the Drosophila melanogaster proteome that shows that there are still between 26% and 29% of...
متن کاملMechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes
Orphan genes are defined as genes that lack detectable similarity to genes in other species and therefore no clear signals of common descent (i.e., homology) can be inferred. Orphans are an enigmatic portion of the genome because their origin and function are mostly unknown and they typically make up 10% to 30% of all genes in a genome. Several case studies demonstrated that orphans can contrib...
متن کامل